
Security Problem Definition

1. Compliant Targets of Evaluation

Software applications to be considered for evaluation under this PP can be categorized under
the following broad categories:

1. Enterprise Server Applications
2. Enterprise Desktop Applications
3. Enterprise-grade Mobile Applications

In addition to the above categories there are large number of applications (Desktop and
Mobile) that fall under “Consumer-grade” category. While such applications could be evaluated
under the Software Application cPP, it is not the intention of this iTC to specifically address this
category. The iTC doesn’t believe the consumer grade app ecosystem would support the cost
and timelines associated with a typical Common Criteria evaluation.

One more way (and perhaps a more useful way in the context of creating SFRs) to categorize
apps is based on type of installation/deployment. The following categories are in scope of the
first iteration of the cPP:

1. Traditional software running on an execution environment, e.g: Enterprise agent
applications/sensors

2. Software appliance type of applications. E.g.:
a. Enterprise management application

3. Distributed applications (e.g. enterprise resource planning systems)

The following categories are out of scope of the first iteration of the cPP:

1. Software appliance type of applications. E.g.:
a. Software defined network appliances

2. Web apps
3. Virtualized applications (e.g. running stand-alone on a VM or in container, as opposed to

applications running on an execution environment that has itself been virtualized)
4. Applications running on bare metal i.e. directly on hardware without an execution

environment such as operating system.

Software defined network appliances are being covered by the Network iTC. Web apps are very
different in terms of how they are built and operate. Their threat model is also quite different,

and is not addressed in this cPP at this point. At the time of writing the SPD, it was also decided
to not cover virtualized applications and bare metal apps due to the slightly different threat
model.

2. Threats and Assumptions

2.1 Threats

T.LOCAL_ATTACK: An attacker can act through unprivileged access on the same computing
platform on which the application executes. For example, attackers may provide maliciously
formatted input to the application in the form of files or other local communications thus
providing unauthorized access to plaintext sensitive data.

T.UNAUTHORIZED_ADMINISTRATOR_ACCESS: An attacker may attempt to gain administrator
access to the application by nefarious means such as masquerading as an administrator to the
application, replaying an administrative session (in its entirety, or selected portions), or
performing man-in-the-middle attacks, which would provide access to the administrative
session. Successfully gaining administrator access allows malicious actions that compromise the
security of the application to gain access to data.

T.WEAK_CRYPTOGRAPHY: Attackers may exploit weak cryptographic algorithms or perform a
cryptographic exhaust against the key space. Poorly chosen encryption algorithms, modes, and
key sizes will allow attackers to compromise the algorithms, or brute force exhaust the key
space and give them unauthorized access allowing them to read, manipulate and/or control the
traffic with minimal effort.

T.UNTRUSTED_COMMUNICATION_CHANNELS: Attackers may take advantage of poorly
designed or non-secure protocols or poor key management to successfully perform man-in-the
middle attacks, replay attacks, etc. Successful attacks will result in loss of confidentiality and
integrity of the critical network traffic, and potentially could lead to a compromise of the
application itself. Attackers may attempt to target applications that do not use standardized
secure tunneling protocols to protect the critical network traffic. This threat is of particular
concern when an application uses protocols that have not been subject to extensive peer
review.

T.UPDATE_COMPROMISE: Threat agents may attempt to provide a compromised update of the
application which undermines the security functionality of the application. Non-validated
updates or updates validated using non-secure or weak cryptography leave the updated
application vulnerable to surreptitious alteration.

T.PLATFORM_UPDATE: Updating the platform that the application operates on could break
application’s functionality. As such an end user might choose not to update the platform,
thereby preventing the patching of known issues on the platform. An attacker could exploit
such unpatched vulnerabilities in the platform to then mount an attack on the application.

2.2 Assumptions

A.PLATFORM: The TOE relies upon a trustworthy computing platform for its execution. This
includes the underlying platform and whatever runtime environment it provides to the TOE.

A.PROPER_USER: The user of the application is trusted to use the software in compliance with
the applied enterprise security policy.
A.PROPER_ADMIN: The administrator of the application is trusted to administer the software
within compliance of the applied enterprise security policy.

A.SECURE_LOCATION: For enterprise servers that run enterprise applications, it is assumed
that these servers are housed in a physically secure location

3. Organizational Security Policy
There are no OSPs for applications.

4. Security Objectives

4.1 Security Objectives for the TOE

O.INTEGRITY: The TOE will provide a means to verify the integrity and authenticity of
downloaded updates.

O.MANAGEMENT: The TOE will provide authorized administrators with the capability to
configure and apply security policies.

O.PROTECTED_STORAGE: To address the issue of loss of confidentiality of sensitive user data in
the event of loss of control of the storage medium, data-at-rest protection will be used.

O.PROTECTED_COMMS: To address both passive (eavesdropping) and active (packet
modification) network attack threats, conformant TOEs will leverage a trusted mechanism for

https://www.niap-ccevs.org/pp/pp_app_v1.2.htm#abbr_TOE
https://www.niap-ccevs.org/pp/pp_app_v1.2.htm#abbr_TOE
https://www.niap-ccevs.org/pp/pp_app_v1.2.htm#abbr_TOE

transferring sensitive data. Transferring sensitive data includes cryptographic keys, passwords,
and any other data specific to the application that should not be exposed outside of the
application. This would apply to all communication, including inter and intra TOE.

O.PRIVACY: PII is sensitive data that needs to be well controlled; as such an application should
only access and disseminate (outside the TOE boundary) this data with explicit authorization
from the user.

O.BEST_PRACTICES: As a best practice, the TOE will use only documented services and APIs of
the runtime environment.

4.2 Security Objectives for the Operational
Environment

OE.PLATFORM: The TOE relies upon the underlying platform for its security and as a result this
platform must be trustworthy. It is the organization’s responsibility to ensure that the platform
meets the trustworthiness requirements of the organization’s security policies.

OE.PROPER_USER: The user of the application uses the software within compliance of the
applied enterprise security policy.

OE.PROPER_ADMIN: The administrator of the application software is trusted to administer the
software within compliance of the applied enterprise security policy.

